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Abstract: Within protected areas, biodiversity loss is often a consequence of illegal resource use. Under-
standing the patterns and extent of illegal activities is therefore essential for effective law enforcement and
prevention of biodiversity declines. We used extensive data, commonly collected by ranger patrols in many
protected areas, and Bayesian bierarchical models to identify drivers, trends, and distribution of multiple
illegal activities within the Queen Elizabeth Conservation Area (QECA), Uganda. Encroachment (e.g., by
pastoralists with cattle) and poaching of noncommercial animals (e.g., snaring bushmeat) were the most
prevalent illegal activities within the QECA. Illegal activities occurred in different areas of the QECA. Poaching
of noncommercial animals was most widely distributed within the national park. Overall, ecological covari-
ates, although significant, were not useful predictors for occurrence of illegal activities. Instead, the location of
illegal activities in previous years was more important. There were significant increases in encroachment and
noncommercial plant barvesting (nontimber products) during the study period (1999-2012). We also found
significant spatiotemporal variation in the occurrence of all activities. Our results show the need to explicitly
model ranger patrol effort to reduce biases from existing uncorrected or capture per unit effort analyses.
Prioritization of ranger patrol strategies is needed to target illegal activities; these strategies are determined
by protected area managers, and therefore changes at a site-level can be implemented quickly. These strategies
should also be informed by the location of past occurrences of illegal activity: the most useful predictor of
Juture events. However, because spatial and temporal changes in illegal activities occurred, regular patrols
throughout the protected area, even in areas of low occurrence, are also required.

Keywords: conservation management, endangered species, Markov chain Monte Carlo (MCMC), ranger-based
monitoring, rule breaking, spatial analysis

Tendencias Espacio-Temporales de las Actividades Ilegales a partir de Datos Recolectados por Guardabosques en
un Parque Nacional de Uganda

Resumen: Dentro de las dreas protegidas, la pérdida de la biodiversidad es comiinmente una consecuencia
del uso ilegal de los recursos. Por esto, entender los patrones y la extension de las actividades ilegales es
esencial para la aplicacion efectiva de la ley y para la prevencion de la declinacion de la biodiversidad.
Usamos datos extensivos, recolectados en su mayoria por patrullas de guardabosques en muchas delas
dreas protegidas, y modelos de jerarquia bayesiana para identificar a los conductores, las tendencias y la
distribucion de muiltiples actividades ilegales dentro del Area de Conservacion Reina Isabel (ACRI), Uganda.
La intrusion (p. ej.: por pastores con ganado) y la caza furtiva de animales no comerciales (p. ej.: la captura
por la carne de animales silvestres) fueron las actividades ilegales mds prominentes en las diferentes dreas
del ACRI. La caza furtiva de animales no comerciales se distribuyo con mayor amplitud dentro del parque
nacional. En general, las covariantes ecologicas, aunque significantes, no fueron pronosticadores titiles para
la aparicion de las actividades ilegales;, en su lugar, la ubicacion de las actividades ilegales en los aiios
previos fue mds importante. Hubo incrementos significativos en la intrusion y la cosecha no comercial
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de plantas (productos no maderables) durante el periodo de estudio (1999-2012). También encontramos
variaciones espacio-temporales en la aparicion de todas las actividades. Nuestros resultados muestran la
necesidad de modelar explicitamente el esfuerzo de patrullaje de los guardabosques para reducir los sesgos de
los analisis existentes de captura por unidad o los que no tienen correcciones. Se necesita de la priorizacion de
las estrategias de patrullaje de los guardabosques para atacar a las actividades ilegales; estas estrategias son
determinadas por los administradores de las dreas protegidas y por eso los cambios a nivel de sitio pueden
implementarse rdpidamente. Estas estrategias también deben informarse con la ubicacion de las apariciones
Dpasadas de la actividad ilegal: el pronosticador mds titil de eventos futuros. Sin embargo, también se requiere
de patrullaje regular en toda el area protegida, incluso en zonas de aparicion baja, ya que ocurrieron cambios

espaciales y temporales en la actividad ilegal.

Palabras Clave: anilisis espacial, cadena de Markov Monte Carlo (MCMC), especies en peligro, infraccion de
las reglas, manejo de la conservaciéon, monitoreo con base en los guardabosques

Introduction

Global biodiversity is in decline and drivers of these de-
clines, such as, climate change and illegal resource ext-
raction, are increasing (Butchart et al. 2010; Craigie et al.
2010; Laurance et al. 2012). There has been significant
loss of habitat throughout the tropics (Achard et al.
2002), where biodiversity is the highest (Hillebrand 2004;
Adams & Hadly 2012) and human pressures are grow-
ing fastest (Cincotta et al. 2000; Laurance et al. 2012).
The decline of tropical biodiversity, even in protected
areas (Craigie et al. 2010; Laurance et al. 2012), is often
linked to increased illegal harvesting of plants and animals
(Butchart et al. 2010; Burn et al. 2011; Maisels et al. 2013).
Within protected areas, inefficient law enforcement can
result in biodiversity loss (Hilborn et al. 2006; Laurance
et al. 2012), whereas effective law enforcement can be a
crucial aspect of successful long-term biodiversity conser-
vation (Keane et al. 2008; Craigie et al. 2010; Tranquilli
et al. 2012). However, the drivers and spatiotemporal
variation of illegal activities within protected areas are
poorly understood (Becker et al. 2013; Lindsey et al.
2013). Determining the drivers and patterns of illegal
activities would enable more effective law enforcement
and potentially reduce the decline of biodiversity within
protected areas.

Although it is the rapid rise in poaching of wildlife
for the harvesting of high-value products, such as, ivory
and rhinoceros horn for international markets that has
recently made headline news (Cressey 2013), illegal activ-
ities within protected areas include a number of different
activities, from encroachment by people for grazing and
cultivation, to illegal plant harvesting (including timber
extraction and collection of medicinal herbs, thatching
grass, etc.), to animal snaring for bushmeat products
(Mackenzie & Hartter 2013; Schulte-Herbriiggen et al.
2013). Pressures from illegal activities can be extraor-
dinarily high. Estimates suggest that nearly 10% of the
Serengeti wildebeest population is poached each year
(Rentsch & Packer 2015), whereas bushmeat hunting in
the Serengeti during the 1970s reduced large ungulate
populations by 90% (Dublin et al. 1990; Ogutu et al.
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2009). Similarly, the area of land illegally logged in pro-
tected areas of Kalimantan has been estimated at almost
10% per year between 1999 and 2002 (Curran et al. 2004).
The ecosystem consequences of illegal activities within
protected areas can be profound (see Beale et al. 2013
for a brief review) and range from ecological cascades
due to loss of keystone species to total habitat loss due
to illegal land conversion. Furthermore, because natural
resources are increasingly and unsustainably exploited
in regions neighboring unprotected areas, pressures are
rising within (Newmark 2008; Wittemyer et al. 2008).

Previous research on illegal resource-use mainly fo-
cused on single activities, such as, hunting for bushmeat
(Nuno et al. 2013; Watson et al. 2013), illegal logging
(Green et al. 2013; Mackenzie & Hartter 2013), or har-
vesting of rare or medicinal plants (Young et al. 2011).
These studies are useful because they provide informa-
tion about the magnitudes and primary spatial trends in
a number of activities. For example, encroachment for
grazing appears to be a major threat to protected areas
in Kenya (Kiringe et al. 2007), and the demonstration
that buffalo (Syncerus caffer) populations were lower
in locations close to certain villages enabled more ef-
fective targeting of ranger patrols (Metzger et al. 2010).
However, most studies do not consider the full range of
illegal activities that occur within a protected area and
assess either temporal or spatial variation alone (but see
Mackenzie et al. 2011 and Plumptre et al. 2014). Single
activity assessments ignore the potential for different pro-
cesses to underlie different activities, yet managers need
to know the temporal and spatial dynamics of all classes
of illegal activity if they are to make informed decisions
on resource allocation.

Existing methods to assess patterns of illegal activities
from ranger-based monitoring include analysis of raw pat-
terns uncorrected for ranger effort or use of encounter
rates per unit effort (e.g., Hilborn et al. 2006; Jachmann
2008a; Mackenzie et al. 2011). However, these simple
methods can give highly biased results because they are
based on the assumption that survey effort is random
or uniform across a protected area, yet ranger-based
monitoring focuses on areas where illegal activities are
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expected to be the highest (and are likely to have direct
impacts on future events) or are affected by factors such
as distance to ranger base and patrol type (Plumptre et al.
2014). Consequently, encounter rates do not reflect the
underlying trends of illegal resource-use if the efficiency
of ranger patrols improves over time. Depending on the
particular assumptions made, these biases may lead to
systematic over- or underestimates of illegal activities and
will always lead to uncertain trends (Keane et al. 2011).
Recently, methods have been developed that can account
for spatial and temporal variation in surveillance effort
through the estimates of the probability of detecting an
event independently from the processes that drive the
distribution of the events (Beale et al. 2013b, 2014), but
these hierarchical models have not yet been applied to
ranger-based monitoring data.

We used Bayesian, spatially explicit occupancy mod-
els to assess the spatial and temporal patterns in occur-
rence of 6 classes of illegal activities within the Queen
Elizabeth Conservation Area (QECA), Uganda between
1999 and 2012: commercial hunting of high-value mam-
mals, hunting of other animals for bushmeat, encroach-
ment by pastoralists with cattle, subsistence harvesting
of plants, and commercial plant harvest (e.g., timber
extraction). This data set, derived from ranger patrol
data collated using the Management Information System
(MIST) database (Stokes 2010), is similar to the data gath-
ered by rangers across many tropical protected areas.
Because an understanding of poacher behavior could
be very useful for management of protected areas, we
aimed to identify areas at greatest risk for each class of
illegal activity, identify the ecological and anthropogenic
drivers of spatial and temporal variation in illegal activi-
ties, and assess the spatial and temporal changes of each
activity.

Methods

Our data set consisted of 84,308 position records from
5,867 ranger patrols conducted between September 1999
and October 2012 in QECA, a mixed forest and savan-
nah grassland protected area in southwestern Uganda
(Fig. 1). During all surveillance patrols (foot and vehicle),
rangers record their location with handheld GPS units
when sighting animals or evidence of illegal activities
or at 30-min intervals after the last sighting or recorded
position. Additional details on the data set are in Sup-
porting Information. Each illegal activity was then as-
signed to 1 of the 6 classes (encroachment, fishing, plant
collection commercial, plant noncommercial, animal
poaching commercial, animal noncommercial; Table 1
& Supporting Information) and aggregated annually to
a 500 m grid of presence or pseudo-absence. We fitted
separate models to each class of activity across the entire
period and for annual subsets.

Estimating Ranger Effort

Because locations are recorded by rangers up to 30 min
apart, we could not know the exact route of all patrols.
Consequently, we estimated the patrol effort between
known points based on biased random bridges (Papworth
et al. 2012). We used R packages adehabitatLT and ade-
habitatHR (Calenge 2006) to estimate probable routes
between fixed points as a utilization distribution (UD) of
each patrol on a 500 m grid. Individual UD surfaces were
summed by year to generate annual estimates of observer
effort. Fully documented code is available in Supporting
Information.

Covariates of Illegal Activity Occurrence

We expected the spatial pattern of illegal activities to be
influenced by the following environmental covariates:
net primary productivity (NPP), topographic wetness,
distances to roads and rivers, terrain slope, wildlife den-
sity (target animal density was the density of commercial
animal species or combined density of other mammal
species targeted by either commercial or noncommer-
cial poachers respectively), and land cover (Supporting
Information). Additional details on covariate data are in
Supporting Information. Using the digital sources iden-
tified in Supporting Information, each of these variables
was extracted at 500-m resolution grid in R (R Core Team
2012); finer-scale data were aggregated using the mean
value. We included NPP as a proxy for the distribution
of wildlife (Loarie et al. 2009; Duffy & Pettorelli 2012)
and suitability for illegal grazing (Pettorelli et al. 2009).
Areas of high wetness and areas in close proximity to
water are also likely to predict areas with relatively high
densities of animals (Redfern et al. 2003; Becker et al.
2013), and we assumed these trends were static over the
year. We expected evidence of illegal activities to occur
closer to roads because roads improve access for human
exploitation of natural resources, such as, bushmeat, min-
erals, and timber (Wato et al. 2006; Laurance et al. 2009;
Watson et al. 2013). In addition, land-cover variation will
influence animal density and travel cost; illegal activity
is more probable closer to human habitation and more
detectable in areas of open savannah (Hofer et al. 2000;
Plumptre et al. 2014).

Statistical Analyses

We used a Bayesian hierarchical modeling approach to
analyze the spatiotemporal distribution of each illegal
activity separately. The models had 3 components:
a process model defining the relationship between
covariates and illegal activities, a component to account
for spatial autocorrelation, and a model to explicitly
account for temporal and spatial variation in the detection
of illegal activities by ranger patrols. Covariates were
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Protected area
boundary

Habitat
- Bush/Riverine Forest

. Forest

Grassland/Scrub

. Swamp

Water
Figure 1. Location of Queen Elizabeth
Conservation Area and the broad land
cover classifications derived from aerial
Okm 10km 20km Dhotographs and bigh-resolution satellite
(I imagery (Plumptre et al. 2014).

Table 1. Classification of illegal activities within the Queen Elizabeth Conservation Area and associated median probability trends (occurrence)
based on data collected from 1999 to 2012.

Activity Examples in Number of Occurrence trend Credible

class MIST" database records (coefficient) intervals (2.5%, 97.5%)
Encroachment livestock grazing, mining, trespassing 1570 0.10° 0.05,0.14
Fishing fishing 443 0.06 —0.04, 0.14

Plant collection commercial pit sawing, cultivation 260 —0.02 —0.23,0.10

Plant noncommercial medicinal plants, grass harvesting 605 0.12° 0.06, 0.17
Animal poaching® commercial hippo, elephant, buffalo 241 —0.02 —0.13, 0.06
Animal noncommercial subsistence hunting, honey harvesting 1589 —0.02 —0.06, 0.03

“Management Information System (Ecological Software Solutions LLC 2009).

bSignificant trend.

CAlthough we separate animal poaching into 2 classes, the primary distinction is in the value of the target: commercial poaching involved bigh-
value products from large berbivores, typically procured via active bunting methods, where the product is likely to be transported regionally,
whereas noncommercial poaching focused on lower value bushmeat for subsistence or local markets only, typically procured via snares.

Conservation Biology
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modeled as linear effects, with the exception of NPP and
topographic wetness, which were modeled as splines
with 2 knots. This model provided an estimate of the
true but unknown pattern of illegal activity, independent
of the detections of this activity. Full details on the model
are provided in Beale et al. (2014) and briefly in the
Supporting Information together with R and WinBUGS
codes.

Statistical analysis was performed in R (R Core Team
2012), calling WinBUGS (Lunn et al. 2000) through the
R2WinBUGS package (Sturtz et al. 2005). We took 1,000
samples from 10,000 Markov chain Monte Carlo (MCMC)
iterations after a burn-in of 1,000 iterations.

Our analyses generated separate annual estimates for
each activity. To estimate the temporal trends of proba-
bilities of each illegal activity, we needed to look across
individual annual models and did so by calculating the
mean probability of occurrence across all cells for each
year for each of the 1,000 MCMC iterations. Spatiotem-
poral trends for each activity and each cell were cal-
culated using generalized linear models for each of the
1,000 MCMC iterations with a quasi-binomial error struc-
ture (because we were modeling probabilities directly
rather than modeling discrete binomial realization of
an underlying probability), where the probability of oc-
currence per cell was the dependent variable and year
was the independent variable. Each spatial and tempo-
ral model therefore provided 1,000 MCMC estimates
of each parameter, which fully propagated model-based
uncertainty.

To compare these temporal trends with those resulting
from traditional analyses, which either use no correction
for effort (raw counts) or use captures per unit effort
(CPUE), we used generalized linear models, with a Pois-
son error structure, for each activity class. For the models
of raw counts, ranger effort was the dependent variable
and year was the independent variable. For CPUE we
used raw counts or effort as the dependent variable and
year as the independent variable.

To test whether the covariates we selected were a
more accurate predictor of illegal activities than the sim-
ple pattern of occurrence of illegal activities over recent
years, we calculated the median probability of occur-
rence (per grid cell) for each year and the probabili-
ties from the previous 5 years with the median annual
occurrence probability and effect sizes of all covariates
(excluding the random effect).

Results

We successfully fitted 71 of the possible 84 occupancy
models (Supporting Information). Models that failed to
converge tended to have fewer than 10 recorded events
in any year.

Overall Patterns

The spatial distribution of illegal resource use differed
among the 6 classes (Fig. 2; corresponding occurrence
maps in Supporting Information). Encroachment (mostly
illegal cattle grazing in QECA) was the most common at
the boundary of the QECA, especially in the northwest,
where there was a high population density of cattle in
the neighboring land. Commercial plant harvesting (for
timber and charcoal) was predicted to be the most likely
in a restricted area in southeastern QECA within the
Maramagambo Forest. This was also an area where the
probability of noncommercial plant harvesting was high.
The highest probability of commercial animal poaching
was concentrated at lake edges and rivers. In addition,
in southern QECA in the Ishasha sector there were ar-
eas with a high probability of noncommercial and com-
mercial animal poaching. Relative to the other classes,
noncommercial animal poaching was widely distributed
across the QECA, and there were few obvious hotspots.

Drivers of Illegal Activities

Parameter values (summarized in Fig. 3; corresponding
effect plots in Supporting Information) showed no
consistent covariate influenced the probability of all
classes of illegal activity, although significant effects (i.e.,
credible intervals that did not overlap zero) were found
for most activities individually, with the exception of
encroachment and commercial plant harvesting. Target
animal density (i.e., density of commercial animals or
combined density of other mammal species that were
used for their respective analyses) strongly influenced oc-
currence of commercial animal poaching (Fig. 3e) but did
not influence noncommercial poaching. Land cover also
influenced patterns of animal poaching; the probability
of all animal poaching was greater in savannah habitats,
and noncommercial poaching was the highest in forest
habitats. Travel cost from villages did not significantly
affect any class of illegal activity, whereas fishing, non-
commercial plant harvesting, and noncommercial animal
poaching were all higher closer to rivers. For NPP and
topographic wetness, there were 2 parameter estimates,
representing the knots used in the smooth splines. The
pattern of these estimates represented the direction
of the effect each variables had on illegal activities.
Topographic wetness was never significant, commercial
animal poaching was associated with lower levels of NPP,
and noncommercial plant harvest and animal poaching
were both associated with relatively higher NPP.

Across years and illegal activities (excluding fishing),
median cell to cell correlation of the annual occurrence
probability with the mean occurrence probability of the
previous 5 years was consistently higher than the cor-
relation between the annual occurrence probability and
predicted median effect size from covariate models alone

Conservation Biology
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Figure 2. Occurrence probabilities of illegal activities in the Queen Elizabeth Conservation Area: (a)
encroacbhment, (b) fishing, (¢c) commercial plant barvesting, (d) noncommercial plant barvesting, (e) commercial

animal poaching, and (f) noncommercial animal poaching.
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productivity.
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(median difference = 0.17; range = 0.06-0.44; Support-
ing Information).

Temporal Trends

Across the activities, only encroachment and noncom-
mercial plant harvesting showed significant overall trends
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Volume 0, No. 0, 2015

(both increasing) between 1999 and 2012 (Table 1),
although most activity classes showed a decrease in 2012,
and there was often considerable interannual variation
(Fig. 4). In contrast, analyses with uncorrected counts
suggested increases in all activities (coefficients = 2.06-
16.61, P < 0.01; Supporting Information), whereas cap-
ture per unit effort analyses identified spurious trends in
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noncommercial animal poaching and commercial plant
harvest, negative and positive, respectively (Supporting
Information).

Spatiotemporal Trends

Although only 2 activities showed overall temporal
trends, we found significant spatiotemporal variation in
occurrence of illegal activity for most activity classes
(Fig. 5). With the exception of southeastern forest, en-
croachment increased throughout the QECA (Fig. 5a).
Spatiotemporal trends of commercial plant harvest ap-
peared to be driven by roads, rivers, and forest; there
was a decrease in activity close to roads and rivers and
an increase in activity in densely forested areas.

Commercial animal poaching increased in the most
areas, with the exception of central savannah areas and
around Lake George in the northern area of the national
park. Increase in noncommercial animal poaching be-
tween 1999 and 2012 mostly occurred in a few scattered
locations and had little apparent pattern.

Discussion

We fitted 71 spatially explicit occupancy models to
ranger-derived monitoring data, providing valuable
insights into poacher behavior in QECA. We found that
the 6 different activities occurred in different areas
and correlated with different covariates. Some of these
relationships have been identified previously (e.g., com-
mercial animal poaching occurs where animal densities
are greatest; Jachmann 2008b; Maingi et al. 2012) or are
otherwise obvious (e.g., illegal fishing is associated with
water), but others are newly identified here (e.g., non-
commercial animal poaching was associated with high-
wetness areas and near rivers, possibly because there is a
need for a certain amount of woody vegetation to conceal
snares and create funnels for wildlife to move into the
snare). Differences between the estimates of temporal
trends among our results and equivalent uncorrected
analyses or captures per unit effort (Supporting Informa-
tion), demonstrate the importance of our independent
estimate of the observation process and highlight the
unpredictability of the biases in the simpler analyses. In
the relatively few examples where we failed to fit a model
(13 of 84), there were usually very few detections of the
activity in question (<10 per year). This suggests our
methods will be widely applicable to similar data sets,
provided effort is known and detections are reasonably
frequent. Although few activities showed significant
overall temporal trends, we found evidence that the
spatial occurrence of several activities changed over time
(Fig. 5). This information is important to ranger deploy-
ment and demonstrates the value of a full spatiotemporal
analysis.

Of the 2 classes of illegal activity that increased signifi-
cantly, encroachment represents perhaps the most imme-
diate threat to the ecological integrity of the QECA (the
increase in noncommercial plant harvesting was caused
by increased unlicensed harvesting of grass for thatch).
The increased incidence of encroachment (Fig. 4) is likely
due to the settlement within the QECA of refugees and
their 10,000-20,000 cattle from the Democratic Repub-
lic of Congo in 20006, their subsequent eviction in 2007,
and continued encroachment since then (Moghari 2009).
Human density outside the QECA is high (Uganda Bureau
of Statistics 2006) close to areas where commercial and
noncommercial plant harvesting was most likely. Similar
results have been reported in other tropical protected
areas, where forest disturbance was more likely closer to
higher human density (Allnutt et al. 2013; Mackenzie &
Hartter 2013), suggesting that these patterns are primarily
driven by the need for fuel and construction (Naughton-
Treves et al. 2007; Mackenzie et al. 2011). Covariates for
both human and livestock densities were not included in
this analysis due to the homogenous data available in this
area (e.g., modeled data from the Gridded Livestock of the
World; Robinson et al. 2014). In addition, indicators of
demand for products (e.g., market prices) were excluded
from the analysis because these were available only at
regional scales.

Animal poaching is the primary concern of rangers, yet
despite investment in antipoaching efforts, we found no
overall temporal trend between 1999 and 2012 in either
commercial or noncommercial animal poaching. This
lack of change should be considered within the context
of continentwide increases in demand for bushmeat
(Lindsey et al. 2013; Schulte-Herbriiggen et al. 2013)
and recent rises in poaching for ivory (Burn et al. 2011;
Maisels et al. 2013), factors that suggest current patrol
effort is successfully buffering QECA from external
drivers. This result is encouraging and demonstrates that
traditional law enforcement activities continue to be
effective at protecting local sites and preventing increases
in poaching, despite global trends. This observation is
consistent with data from South Luangwa National Park
(Becker et al. 2013) that showed no change in snaring
during 2006-2010 and results from southern Africa
where despite rises in rhino poaching, other illegal ac-
tivities remain rare within highly patrolled environments
(Beale et al. 2013a). Spatially, commercial poaching was
primarily associated with a relatively high density of
target animals, but there was no equivalent relationship
for noncommercial poaching, which was instead more
generally dispersed across QECA than other activities.
The association of high-value commercial poaching
with high density of target animals is unsurprising and
confirms earlier results from Maingi et al. (2012). The
difference perhaps reflects the differences in absolute
abundance of the animal targets of commercial and
noncommercial poachers. Commercial poachers must
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043 0.36
0 0
-2.19 -1.06
(©) Plant commercial (d) Plant non-commercial
1.44 0.8
0
0
-1.54 -0.48
(e)  Animal commercial (H) Animal non-commercial
Figure 5. Spatiotemporal trends of illegal
activity per grid cell (500 m) between
1999 and 2012 in the Queen Elizabeth
Conservation Area: (a) encroachment,
(D) fishing, (¢) commercial plant
harvesting, (d) noncommercial plant
0.44 0.34 barvesting, (e) commercial animal
0 poaching, and (f) noncommercial animal
0 poaching (white, no change; the darker
the tone the more significant the trend
-0.74 -0.31  over the entire period).

hunt relatively few target animals in the areas where they
are most abundant, whereas noncommercial poachers
may trap sufficient animals in the most convenient areas
with little regard to overall density because they are able
to leave their snares for several days or weeks.

Although we identified significant correlates for most
illegal activity classes, the correlations were generally
weak and had wide credible intervals, and we identified
none at all for encroachment and noncommercial plant
harvesting (Fig. 3, Supporting Information). Several ex-
pected patterns were not found. For example, in contrast
to studies in Kenya (Wato et al. 2015; Kimanzi et al. 2015)
and Bwindi Impenetrable National Park (Twinamatsiko
et al. 2014), we found no association between noncom-
mercial animal poaching and travel cost or distance to
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roads, presumably reflecting differences in poacher be-
havior between the 2 areas. Instead, much of the spatial
pattern was explained by the spatially explicit random
effect rather than covariates. There are several possible
explanations for this: we missed important covariates, the
covariate surfaces we used were not sufficiently accurate,
there were strong unmodeled interactions between co-
variates, or illegal activities were genuinely not strongly
correlated with covariates. We consider the first and sec-
ond possible explanations relatively unlikely because we
used a suite of covariates common to similar analyses
(e.g., Wato et al. 2006; Watson et al. 2013), we did find
evidence of significant effects with most covariates, and
we have considerable first-hand experience of QECA that
confirms the reliability of the surfaces used. There are
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perhaps good reasons to expect complex interactions be-
tween covariates. Travel cost may be weighed up against
animal density or individuals may be seeking to optimize
their success at multiple activities at once. An illegal pas-
toralists with cattle may well seek to set snares while in
the protected area but may be unlikely to do so in the
immediate vicinity of their own cattle. Such interactions
may be real but are too complex to estimate given the
noisy data available, meaning that for practical purposes
this explanation and the final one are equivalent: illegal
activities in QECA were not strongly correlated with sim-
ple environmental covariates. Although this does mean it
is difficult to predict patterns of illegal activity based on
covariates alone, and despite significant spatiotemporal
variation over the long term, our annual models showed
broadly similar patterns for each activity year after year.
Encroachment tended to occur in the northwest, illegal
logging in the Maramagambo forest, commercial animal
poaching along the Kazinga channel, etc. Consequently,
the best empirical prediction of future poaching activity
will come from the current distribution, and intelligence-
driven ranger patrols based on the detailed knowledge
generated through these analyses will likely improve de-
tections of illegal activities.

Although the past does seem to be the best predictor
of the future for the illegal activities we analyzed, our spa-
tiotemporal analysis provides evidence that longer term
changes in illegal activities occur, revealing relatively sub-
tle changes in illegal activities that may be missed by
spatial or temporal analyses alone. These changes pre-
sumably reflect changes in poacher behavior either in
response to changing ranger effort (e.g., the decrease in
commercial animal poaching in the south may be associ-
ated with the large increase in ranger effort in this region
over the study period) or as a consequence of changing
demand for different natural products (e.g., the decline
in plant harvesting along rivers [Fig. 5c] probably reflects
declines in demand for fishing floats from Aeschynomene
elapbroxylon [Ambatch] trees as a consequence of legal
supply being made available elsewhere [A.J. Plumptre,
personal observation]). Such temporal change in poacher
behavior is often suggested (Keane et al. 2008) and forms
the justification of a deterrence-based approach to ranger
activities, but these results provide strong empirical sup-
port for such temporal behavioral shifts. A consequence
of this is that although optimizing ranger effort in high-
occurrence areas is generally wise, it remains important
to maintain sufficient patrol effort in areas where de-
tections are expected to be lower to monitor spatial
change in patterns over time, a similar recommendation
to that of Watson et al. (2013). Determining the deter-
rence effects of patrols and identifying the threshold at
which patrol effort prevents the occurrence of illegal
activities are important future requirements and will aid
patrol strategy decisions and improve patrol efficiency in
resource-limited settings.
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